If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1341=16t^2
We move all terms to the left:
1341-(16t^2)=0
a = -16; b = 0; c = +1341;
Δ = b2-4ac
Δ = 02-4·(-16)·1341
Δ = 85824
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{85824}=\sqrt{576*149}=\sqrt{576}*\sqrt{149}=24\sqrt{149}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-24\sqrt{149}}{2*-16}=\frac{0-24\sqrt{149}}{-32} =-\frac{24\sqrt{149}}{-32} =-\frac{3\sqrt{149}}{-4} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+24\sqrt{149}}{2*-16}=\frac{0+24\sqrt{149}}{-32} =\frac{24\sqrt{149}}{-32} =\frac{3\sqrt{149}}{-4} $
| 9x+7+9x+7+2x+6=180 | | Y=2x^2-32x+56 | | 4x+20=34 | | –x2+10x=25 | | 27–(5b–4b)=(7b–1)+(3b+6) | | 1.6^x=1.03 | | 12a-7-3a=3-4a-10 | | 1,6x+0,4-x=5,2-0,6 | | 5^4-5x=2^x-4 | | (x+3)(x+4)+(x–2)(x+1)=30 | | (+x^2+4)(+x^2-4)=0 | | (x2+4)(x2-4)=0 | | a=(314)(6) | | (x-10)^2=x^2-400 | | a+(a+15)+(a+30)=180 | | 5)-b-2=8 | | (5x+15)+(2x+5)=180 | | Z^3+-9z^2+14z+24=0 | | Z3+-9z2+14z+24=0 | | 2(x+3)=4-3 | | x.20/(100)=100 | | x/36=-4 | | 4x–8=8–4x | | 180=x-0.2x | | 8x²=1600 | | 5r+15=3 | | X=4,2x | | |m+9|+3=34 | | 8n+40=120 | | (−3x−8)(−4.5x−1.4)=0 | | −3x−8)(−4.5x−1.4)=0 | | (0.2x+4)(x)=0 |